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Abstract

The CDC’s National Report on Biochemical Indicators of Diet and Nutrition in the US Population 

(Nutrition Report) is a serial publication that provides ongoing assessment of the population’s 

nutritional status. The Nutrition Report presents data on blood and urine biomarker concentrations 

(selected water- and fat-soluble vitamins and nutrients, trace elements, dietary bioactive 

compounds) from a representative sample of the population participating in the NHANES. The 

Second Nutrition Report (released in 2012) contains reference information (means and percentiles) 

for 58 biomarkers measured during all or part of 2003–2006, stratified by age, sex, and race-

ethnicity. Where available, we presented cutpoint-based prevalence data during 2003–2006, and 

data on changes in biomarker concentrations or prevalence since 1999. Blood vitamin 

concentrations were generally higher in older (≥60 y) compared to younger (20–39 y) adults and 

lower in Mexican Americans and non-Hispanic blacks compared to non-Hispanic whites. Nearly 

80% of Americans (≥6 y) were not at risk for deficiencies in any of the 7 vitamins studied (A, B-6, 

B-12, C, D, E and folate). Deficiency rates varied by age, sex, and race-ethnicity. About 90% of 

women (12–49 y) were not at risk for iron deficiency, but only 68% were not at risk for 

deficiencies in iron and all 7 vitamins. Young women (20–39 y) had median urine iodine 

concentrations bordering on insufficiency. First-time data are presented on plasma concentrations 

of 24 saturated, mono- and polyunsaturated fatty acids. Tabulation and graphical presentation of 

NHANES data in the Second Nutrition Report benefits those organizations involved in developing 

and evaluating nutrition policy.
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INTRODUCTION

The NHANES provides the most comprehensive assessment of the health and nutritional 

status of the US population, and it is the only population representative survey that collects 

biological specimens and produces reference information on nutritional biomarkers (1–3). 

Policy makers and researchers rely on the NHANES results to provide information on and 

evaluate public health programs and policies, develop national reference intervals, and 

generate research hypotheses. Until recently, no publication existed that presented 

descriptive data on the collection of nutritional biomarkers measured as part of the 

continuous NHANES (1999 and forward) in a straightforward and consistent format to allow 

for comparisons across demographic subgroups and biomarkers.

The CDC’s National Report on Biochemical Indicators of Diet and Nutrition in the U.S. 

Population (Nutrition Report) fills this important gap. The Nutrition Report was established 

in 2008 and consists of a series of publications that use data from the continuous NHANES 

to provide an ongoing assessment of the US population’s nutritional status by describing 

blood and urine concentrations of dietary and nutrition-related biomarkers by age, sex, and 

race-ethnicity. The CDC Division of Laboratory Sciences at the National Center for 

Environmental Health (NCEH/DLS)4 conducted the laboratory and data analyses for 58 

biochemical indicators presented in the Second Nutrition Report––the most current report of 

this series––which was released in April 2012 and covers data from all or part of the 

NHANES from 2003 through 2006 (4). Where available, data are also presented on the 

prevalence of low or high biomarker concentrations during 2003–2006 and on changes in 

biomarker concentrations or prevalence estimates over time since 1999. The First Nutrition 
Report was published in July 2008 and contained information on 27 biochemical indicators 

from all or part of the NHANES 4-y period from 1999 through 2002 (5). Both reports and an 

accompanying executive summary and factsheets for the second report are accessible online.

Measuring biomarkers and assessing nutrient intake from foods and dietary supplements are 

the 2 main tools used to assess the nutritional status of a population (6). The Nutrition 
Report covers the first of these 2 approaches. The overarching goal of this paper is to review 

the main features and findings of the Second Nutrition Report. Our specific objectives are: 

(a) to discuss the public health uses and the value of the report in the context of nutritional 

status assessment; (b) describe selected findings by summarizing data across various report 

chapters; and (c) highlight new data presented in the report.

SUBJECTS AND METHODS

The NHANES collects cross-sectional data on the health and nutritional status of the civilian 

non-institutionalized US population (3). Since 1999, the CDC National Center for Health 

Statistics (NCHS) has conducted the NHANES as a continuous survey with data released in 

2-y cycles. The survey obtains a stratified, multistage, probability sample designed to 

represent the US population on the basis of self-reported age, sex, and race-ethnicity. NCHS 

4Abbreviations used: 25OHD, 25-hydroxyvitamin D; LOD, limit of detection; MA, Mexican Americans; NCEH/DLS, National 
Center for Environmental Health/Division of Laboratory Sciences; NCHS, National Center for Health Statistics; NHB, non-Hispanic 
blacks; NHW, non-Hispanic whites; PLP, pyridoxal-5′-phosphate; RSE, relative standard error.
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personnel first interview survey participants in their homes where they collect information 

on demographic characteristics, dietary supplement use, and some health-related issues. 

Participants undergo a physical examination, blood draw and urine collection about 1–2 wk 

after the household interview in a Mobile Examination Center. A complete 24-h dietary 

recall is performed at that time, with a second recall performed by telephone 3–10 d later for 

a subset or all participants, depending on the survey cycle. All respondents gave informed 

consent, and the NHANES protocol was reviewed and approved by the NCHS Research 

Ethics Review Board. Interview and examination response rates for each survey period are 

publically available (7).

Biomarker laboratory methods

The NCEH/DLS laboratory analyzed biological specimens for all 58 nutritional biomarkers 

for which data were presented in the Second Nutrition Report. Detailed laboratory method 

information is provided elsewhere (8, 9).

Statistical analyses

A detailed description of all statistical analyses can be found in the Introduction chapter of 

the Second Nutrition Report (4). Statistical analyses were performed using SAS (version 9, 

SAS Institute Inc., Cary, NC) and SUDAAN (version 9, RTI, Research Triangle Park, NC) 

software. Because the NHANES sample design is a complex, multistage probability sample, 

we used sample weights to account for differential nonresponse or noncoverage and to adjust 

for oversampling of some groups. Statistics provided in the report for all biomarkers 

included unadjusted geometric means and selected percentiles with 95% confidence 

intervals. The data were grouped by age, sex, and race-ethnicity. With the exception of 

vitamin C and body iron, all biomarkers covered in the report were right-skewed; thus, a 

geometric mean provided a better estimate of central tendency. Arithmetic means were 

presented for vitamin C and body iron as the distributions of these biomarkers were 

reasonably symmetric. For calculation of geometric means, concentrations less than the limit 

of detection (LOD) were assigned an imputed value equal to the LOD divided by the square 

root of 2. If the percentage of results <LOD was greater than 40%, geometric means were 

not calculated. Standard error estimates were calculated by use of the Taylor series 

(linearization) method within SUDAAN. Percentile estimates were calculated by use of 

linear interpolation. Confidence intervals for percentiles were calculated by the Woodruff 

method (10). We used the unweighted sample size and an average design effect of 1.4 (as in 

the First Nutrition Report [5]) as the criteria to report percentiles of sufficient precision (11). 

Recent sample design guidance from NCHS for the continuous NHANES suggested a 

similar design effect of 1.5 (12). In order for percentiles to be considered reliable, at least 

112 persons had to be represented to allow estimation of the 10th and 90th percentiles, 224 

persons for the 5th and 95th percentiles, and 448 persons for the 2.5th and 97.5th percentiles. 

We noted percentiles for which these requirements were not met. Where possible, we also 

described biomarker concentrations across survey cycles during all or part of the 8-y period 

from 1999 through 2006.

For biomarkers with accepted cutoff values for low and/or high concentrations (e.g., folate, 

vitamins A, B-6, B-12, C, D, E, ferritin)—suggesting risk of deficiency or excess of certain 
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micronutrients—we presented prevalence estimates by age, sex, or race-ethnicity for all or 

part of NHANES 1999–2006. We used the relative standard error (RSE) as a criterion for 

prevalence estimates of sufficient precision. Prevalence estimates were noted if 30% ≤ RSE 

<40%. Estimates were not provided if they were associated with an RSE ≥40%. All 

estimates presented in this paper were statistically reliable based on these criteria.

For biomarkers measured in urine, we presented separate tables for the concentration of each 

indicator expressed as per volume of urine (uncorrected table) and per gram of urine 

creatinine (creatinine-corrected table).

Where long-term trending information beyond the continuous NHANES was available and 

of public health interest, we presented figures in the highlights section of each chapter 

showing changes in biomarker concentrations from NHANES III (1988–1994) to 1999–

2002 and 2003–2006 using age-adjusted geometric mean concentrations that have been 

generated in SUDAAN by use of age-standardizing proportions from the 2000 US Census 

population (using direct standardization). Statistically significant (P <0.05) differences 

between age-adjusted geometric means (time trend analysis) or between means or 

percentages comparing population groups were assessed through pairwise comparisons.

RESULTS

Features and public health uses of the Second Nutrition Report

The Second Nutrition Report contained more than twice the number of biomarkers 

compared to the first report (58 vs. 27). This was largely due to the addition of 24 plasma 

fatty acid concentrations. New features of the Second Nutrition Report included information 

on prevalence of nutrient deficiencies or excess, trends over time for the period 1999–2006, 

and the presentation of central 95% reference intervals (2.5th to 97.5th percentile), often used 

to describe normal concentrations in a population (Supplemental Table 1). Because 

concentrations outside the interval are generally considered to be unusual, 95% reference 

intervals can be used to study the association of biomarker concentrations with health 

outcomes in the absence of biologically derived clinical cutoff values.

The primary objective of the Nutrition Report is to inform public health scientists and policy 

makers about the biomarkers of diet and nutrition in the general US population and in 

selected subpopulations. These data help physicians, scientists and public health officials 

assess inadequate or excess intake and inform analyses on the relation between biochemical 

indicators and health outcomes. Other objectives and public health uses of the information 

include: (a) establishing and improving on existing population reference levels that can be 

used to determine whether an individual or a group has an unusually high or low 

concentration of a diet-and-nutrition biochemical indicator; (b) determining whether the 

nutrition status of special population groups, such as minorities, children, women of 

childbearing age, or the elderly, is different from that of other groups, or whether such 

nutrition status needs improvement; (c) tracking trends over time in the population’s 

biomarker concentrations; (d) assessing the effectiveness of public health efforts to improve 

the diet and nutrition status of the US population; (e) testing the appropriateness of cutoff 
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values; and (f) guiding research to perform more in-depth analyses of the NHANES data and 

to generate hypotheses for future nutrition and human health studies.

Selected findings of the Second Nutrition Report

The biochemical indicators of diet and nutrition assessed in the Second Nutrition Report, 
why they were measured, what the recommended concentrations or cutoff values are, and 

selected report findings, are presented in Table 1. Compared to young adults (20–39 y), 

children had significantly higher blood concentrations for most vitamins: B-6 (measured as 

serum pyridoxal-5′-phosphate [PLP], the biologically active coenzyme form and best single 

indicator of status), B-12 (measured as serum total cobalamin), C (measured as serum 

ascorbic acid, an indicator of tissue stores), D (measured as serum 25-hydroxyvitamin D 

[25OHD], the circulating form and indicator of status) and folate (measured as serum and 

RBC folate, short- and long-term indicators of status) (Fig. 1, panel A). Children had 

significantly lower concentrations of serum vitamins A and E. Older persons (≥60 y) also 

had mostly significantly higher blood vitamin concentrations compared to younger adults, 

except for PLP and 25OHD concentrations (Fig. 1, panel B). Most vitamin concentrations 

were significantly lower in Mexican Americans (MA; Fig. 1, panel C) and non-Hispanic 

blacks (NHB; Fig.1, panel D) compared to non-Hispanic whites (NHW), except for serum 

vitamin B-12 where these two race-ethnic groups had significantly higher serum 

concentrations and for vitamin C where they had comparable serum concentrations to NHW. 

Compared to males, females had significantly higher concentrations of vitamins C and E, 

and folate (serum and RBC), comparable concentrations of vitamin B-12 and 25OHD, and 

significantly lower concentrations of vitamin A and PLP (Fig. 1, panel E).

The iodine intake of the US population was adequate on the basis of median urine iodine 

concentrations recommended by the WHO (13) (Fig. 2). However, young women (20–39 y) 

had significantly lower iodine intake compared to other female age groups (except for 

women 40–59 y), just slightly above the “insufficient intake” category. Furthermore, 

children (6–11 y) had significantly higher iodine intake compared to other age groups 

(except for men ≥60 y), placing children, particularly boys, into the “above requirements” 

category.

Some of the nutritional biomarkers that were measured as part of the continuous NHANES 

were also previously measured in NHANES III (1988–1994), allowing us to provide long-

term trending information on changes in biomarker concentrations over time. Age-adjusted 

geometric mean concentrations of serum and RBC folate markedly and significantly 

increased (~50% and more) after the introduction of fortification of cereal-grain products 

with folic acid in 1998 (Fig. 3, panels A and B). We observed modest but significant 

decreases (~10%) in 25OHD concentrations from NHANES III to 2001–2002 (Fig. 2, panel 

C) and modest but significant increases (~15%) in urine iodine concentrations during the 

same time period (Fig. 2, panel D). Concentrations of serum vitamins A, B-12 and E 

remained generally unchanged with small fluctuations (<10%; in some cases significant) 

over almost two decades (Supplemental Fig. 1, panels A–C). Serum ferritin concentrations 

decreased modestly but significantly (~10%) in women of childbearing age from NHANES 

III to 2001–2002 (Supplemental Fig. 1, panel D).
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The prevalence of low concentrations for any single selected individual nutrient in the 

general US population (children and women for iron) was ~10% or less in NHANES 2003–

2006 (Fig. 4). The four nutrients with the highest prevalence of persons at risk for deficiency 

(6–10.5%) were vitamin B-6 [PLP <20 nmol/L (14); ≥1 y], iron [serum body iron <0 mg/kg 

(15); children 1–5 y and women 12–49 y], vitamin D [25OHD <30 nmol/L (16); ≥1 y], and 

vitamin C [serum ascorbic acid <11.4 μmol/L (17); ≥6 y]. The four nutrients with the lowest 

prevalence (≤2%) were vitamins B-12 [serum total cobalamin <200 ng/L (148 pmol/L) (18); 

≥1 y], A [serum retinol <70 μmol/L (19); ≥6 y], and E [serum alpha-tocopherol <11.6 

μmol/L (20); ≥6 y], and folate [RBC folate <95 μg/L (215 nmol/L) (21); ≥1 y].

For many nutritional biomarkers, the prevalence of low concentrations varied further by age, 

sex, or race-ethnicity. For example, compared to young adults (20–39 y; 9.9%) children and 

adolescents were significantly less likely to be at risk for vitamin B-6 deficiency (≤5%), 

while older adults were significantly more likely to be at risk (16%) (Fig. 5, panel A). NHB 

(31%) and MA (12%) were significantly more likely to be at risk for vitamin D deficiency 

compared to NHW (3%) (Fig. 5, panel B). MA children (11%) were significantly more 

likely to be at risk for iron deficiency compared to NHB (5%) and NHW children (6%) (Fig. 

5, panel C). MA (13%) and NHB (16%) women of childbearing age were significantly more 

likely to be at risk for iron deficiency compared to NHW women (7%) (Fig. 5, panel D).

Since the release of the Second Nutrition Report, we assessed the prevalence of multiple low 

biomarker concentrations in NHANES 2005–2006 to better estimate the burden of risk for 

deficiencies in the US population. Nearly 8 of every 10 Americans (78%) and almost three-

quarters of women of childbearing age (12–49 y) were not at risk for deficiencies in any of 

the 7 vitamins (A, B-6, B-12, C, D, E and folate) studied in the Second Nutrition Report 
(Table 2). Sixteen percent of the population was at risk for deficiency in 1 vitamin and 6% 

had 2 or more vitamin concentrations low enough to be at risk for deficiencies. About 9 of 

every 10 women of childbearing age were not at risk for iron deficiency, but only two-thirds 

of women were not at risk for deficiencies in iron and all 7 vitamins. Twenty-three percent 

of women of childbearing age had 1 and 9% had 2 or more vitamin concentrations 

suggesting risk for deficiencies.

New data presented in the Second Nutrition Report

A panel of 24 saturated, mono-, and polyunsaturated fatty acids was measured for the first 

time in NHANES during the 2003–2004 survey period (plasma from fasted adults ≥20 y). In 

general we found that younger adults (20–39 y) had lower plasma fatty acid concentrations 

compared to older adults (≥60 y). Plasma fatty acid concentrations were generally similar in 

men and women. For most fatty acids we did not find race-ethnic patterns that were 

consistent within class (SFA, MUFA or PUFA). However, geometric means of the PUFA 

eicosapentaenoic acid (EPA), which is typically derived from seafood and supplements, 

were significantly higher in NHB and NHW compared to MA adults. In addition, plasma 

concentrations of the related long-chain PUFA docosahexaenoic acid (DHA) were 

significantly higher in NHB compared to MA and NHW adults.

A new marker of iron status, body iron, was used for the first time in this report to generate 

reference information for children and women of childbearing age. This marker is calculated 
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from the ratio of soluble transferrin receptor to serum ferritin (15), is less affected by 

inflammation than the acute-phase protein ferritin, and can assess the full spectrum of iron 

status of populations. Body iron is in a positive balance (≥0 mg/kg) when there is residual 

storage iron or in negative balance (<0 mg/kg) when there is functional iron deficiency (15). 

We found a significantly lower prevalence (mean [95% CI]) of risk for iron deficiency in 

women of childbearing age (12–49 y) using body iron (<0 mg/kg; 9.5% [8.6–10.5%]) 

compared to using serum ferritin as an indicator (<15 μg/L (22); 13.6% [12.2–15.2%]), 

possibly because serum ferritin can be elevated in the presence of inflammation, thus 

interfering with its association with iron deficiency.

The Second Nutrition Report presents a first assessment of acrylamide exposure in the US 

population. Acrylamide occurs in a wide range of food products commonly consumed by a 

large portion of the population; potato chips, French fries and some baked goods contain 

notable concentrations. Exposure to acrylamide from food and other sources (e.g., smoking) 

is of concern, because acrylamide is “reasonably anticipated to be a human carcinogen” and 

a potentially endocrine disrupting chemical. Hemoglobin adducts of acrylamide and 

glycidamide, an epoxide of acrylamide formed in the body, reflect the internal dose of 

acrylamide during the preceding 2–4 mo. We found detectable concentrations of these 

hemoglobin adducts in nearly all blood samples measured as part of NHANES 2003–2004.

DISCUSSION

The CDC Second Nutrition Report provides the single most comprehensive biochemical 

assessment of the US population’s nutritional status to date. Other sources of nutritional 

biomarker reference data, such as textbooks and research publications, may be outdated, 

generally do not provide information by demographic subgroups, or use inconsistent data 

analysis approaches, resulting in data that cannot be readily compared. NCHS has 

historically released or commissioned a variety of products presenting NHANES results 

(23). NHANES Series Reports (mainly Series 11) and Life Sciences Research Office 

Reports from surveys prior to the continuous NHANES have been of particular value to the 

nutrition community; however such reports have not been available for the continuous 

NHANES.

The consistent data analysis approach of the Nutrition Report is one of its major strengths. 

By presenting reference data on population distributions in standardized tables and graphs, it 

is now possible to conduct comparative analyses across demographic subgroups and 

biomarkers, as well as across survey periods. This feature is of particular value when 

generating research hypotheses, and a necessity when evaluating the effectiveness of public 

health interventions to improve the nutritional status of the population. Another strength of 

the Nutrition Report is that it is based on data from 2 survey cycles (when available), which 

provides adequate sample size to compute statistically reliable estimates for the main race-

ethnic categories as well as robust central 95% reference intervals for nutritional biomarkers 

by age, sex, or race-ethnicity. It also allows multi-level stratifications to describe population 

distributions by combinations of age, sex, and race-ethnicity.
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The number of report findings is too large and topic areas too numerous to permit a 

comprehensive discussion in this work; however, a selection of noteworthy findings will be 

discussed, the first being the significant public health success of folic acid fortification in the 

United States. The sustained positive impact of adding folic acid to the US food supply since 

1998 was highlighted in the Second Nutrition Report and has also been reported in a recent 

analysis of NHANES data up to 2010 (24). Other countries that introduced folic acid 

fortification also found the prevalence of folate deficiency to be <1% post-fortification, for 

example in the general Canadian population from the Canadian Health Measures Survey 

(25) and in a convenience sample of Chilean women of reproductive age (26).

The Second Nutrition Report finding that risk for vitamin D deficiency [defined by the 

Institute of Medicine cutoff value of <30 nmol/L (16)] was highest among black Americans 

compared to the other 2 race-ethnic groups (NHW and MA) has also been confirmed in a 

recent analysis of NHANES 2001–2006 data (27). Further research is needed to understand 

whether African Americans have lower requirements for vitamin D to maintain bone health, 

as clinical data show that they have greater bone density and fewer fractures than other race-

ethnic groups (28), or possibly factors other than vitamin D affect these outcomes.

A third important finding of the Second Nutrition Report was that young women (20–39 y) 

had the lowest iodine status compared to most other age groups. This is of concern because 

consuming an adequate amount of iodine during pregnancy is critical for fetal neurologic 

development. Perrine et al. identified dairy products as an important contributor to iodine 

status in women of reproductive age in the United States, and the authors concluded that 

some subgroups of women may be at risk for iodine deficiency, particularly women who do 

not consume dairy products (29).

Nutrient deficiencies are well documented, and have characteristic signs and symptoms; 

however, cutoff values that define nutrient inadequacies are not without controversy and 

generally define increased risk. For example, there is a lack of scientific consensus regarding 

cutoff values to determine low vitamin B-12 status and Bailey et al. have shown that 

depending on the cutoff value used for either serum B-12 or methylmalonic acid, widely 

different prevalence estimates are obtained (30). Furthermore, not all generally accepted 

cutoff values necessarily represent clinical deficiency. The cutoff value of 20 nmol/L for low 

serum PLP concentrations was selected by the Institute of Medicine as the basis for the 

Estimated Average Requirement and it may overestimate the vitamin B-6 requirement for 

health maintenance of more than half the group (11). A plasma PLP concentration of 20 

nmol/L is not accompanied by observable health risks but it allows a moderate safety margin 

to protect against the development of signs or symptoms of deficiency. Epidemiologic 

studies often determine nutritional biomarker concentrations that are “suboptimal” and are 

associated with an increased risk of adverse health effects. Determining the concentrations 

of nutritional biomarkers that may indicate risk for disease and the concentrations that are of 

negligible health concern requires research studies that allow making causal inferences and 

are separate from NHANES or the Nutrition Report. Nonetheless, the Nutrition Report 
provides the population data to estimate the magnitude of a health problem once threshold 

levels have been determined.
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Using generally accepted cutoff values for nutrient deficiencies in the Second Nutrition 
Report, we found that a large portion (~80%) of the US population was not at risk for 

deficiencies in 7 vitamins. Yet, 6% of the population was at risk for deficiencies in 2 or more 

vitamins. Having such information for a population is not only invaluable, but also globally 

unique. Not many countries conduct nationally representative nutrition surveys, and even if 

they do, the number of nutrients covered and nutritional biomarkers assessed is much 

smaller than in the NHANES.

The Second Nutrition Report presented first-time reference data for many nutritional 

biomarkers. Data on vitamin B-6 and C provided a more complete assessment of vitamin 

status. The first measurements of fatty acids in the US population provided a baseline to 

track fatty acid concentrations over time, which will evaluate our nation’s progress toward 

more heart-healthy diets. The inclusion of a new marker of iron deficiency improved the 

diagnosis of iron status in the two vulnerable groups, children and women of childbearing 

age.

The Nutrition Report has limitations. First, it does not cover information beyond 

biochemical indicators, such as dietary intake, supplement usage, hematologic 

measurements, and anthropometric body measurements, which are generally used together 

with the biomarker information to comprehensively assess nutritional status. The USDA’s 

What We Eat in America is the dietary intake interview component of NHANES and 

provides data on food and nutrient intakes of Americans (31). Second, adequate biomarker 

concentrations of specific nutrients may not necessarily indicate that people are eating 

healthy and balanced diets because nutritional biomarkers reflect cumulative intakes from 

foods, some fortified with micronutrients, and from dietary supplements, as well as 

physiological effects such as bioavailability. Third, the Nutrition Report does not make 

recommendations about diet or lifestyle. The Dietary Guidelines for Americans (32) provide 

recommendations about what to eat, and professional associations offer guidelines on 

nutrition related risk factors that influence health outcomes. Other limitations of the 

Nutrition Report and of NHANES are that certain population groups (pregnant and lactating 

women, infants <1 y of age) are under-represented or missing completely, resulting in a lack 

of normative data in these important groups, not all nutrients are covered, and not all race-

ethnic groups are adequately oversampled to provide basic statistical information such as 

means and percentiles. An important limitation of the Nutrition Report is that it describes the 

biochemical characteristics of the population and of subgroups, but provides only limited 

interpretation of relative differences in nutritional status by age, sex, and race-ethnicity.

As an extension of the Second Nutrition Report, we have conducted descriptive modeling 

analyses examining the association of 10 preselected sociodemographic (age, sex, race-

ethnicity, education, and income) and lifestyle variables (dietary supplement use, smoking, 

alcohol consumption, BMI, and physical activity) with 29 biomarkers of nutritional status in 

order to assess whether demographic differentials in nutritional status were confounded by 

the above mentioned variables. The findings from these analyses, presented in the collection 

of papers in this journal supplement, shed light on important intermediaries between the 

association of diet and health. Biomarkers are mediators of this important association and 

factors influencing biomarkers are often understudied. Each paper addresses a different class 
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of diet and nutrition biomarkers covered in the Second Nutrition Report: water-soluble 

vitamins, fat-soluble vitamins and nutrients, trace elements, phytoestrogens (isoflavones and 

lignans), and acrylamide hemoglobin adducts. Two additional papers address topics 

complementary to these analyses: 1 paper discusses the statistical approach used for these 

analyses and how this approach differs from other approaches used to model observational 

data; the other paper addresses the association of nutritional biomarkers with selected 

preanalytical and physiological variables, such as fasting, time of specimen collection, 

inflammation, renal function, and pregnancy, to add another dimension to the interpretation 

of biomarker concentrations. As with the Nutrition Report, we conducted these analyses in a 

systematic way to allow a comparison of findings across biomarkers and therefore chose to 

forfeit insight into the association between variables unique to each individual biomarker. 

The collective information from these analyses will not only help investigators better 

interpret currently available data on biomarker concentrations, but it will also provide a 

foundation to investigators planning future nutrition studies or developing predictive models 

to study the association of nutritional status with health outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relative differences in geometric mean concentrations (arithmetic mean for serum vitamin 

C) comparing two demographic subgroups in the US population aged ≥6 y, NHANES 2003–

2006. Panel A: children (6–11 y) vs. young adults (20–39 y); panel B: older (≥60 y) vs. 

young (20–39 y) adults; panel C: MA vs. NHW; panel D: NHB vs. NHW; panel E: females 

vs. males. Vitamin B-6, A, and E data are only available for NHANES 2005–2006. The 

relative difference was obtained by calculating the difference between the geometric 

(arithmetic) mean concentration of the comparison group (mentioned first) and the reference 

group (mentioned second) divided by the geometric (arithmetic) mean concentration of the 

reference group, and expressed in percent. The level of significant difference is indicated as 

follows: * <0.05; ** <0.01; *** <0.001; **** <0.0001; NS, not significant, P <0.05. Refer 

to Supplemental Table 2 for sample sizes (n). 25OHD, 25-hydroxyvitamin D; MA, Mexican 

Americans; NHB, non-Hispanic blacks; NHW, non-Hispanic whites; PLP, pyridoxal-5′-

phosphate; vit, vitamin.
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Figure 2. 
Median concentrations of urine iodine in the US population aged ≥6 y by age group and sex, 

NHANES 2001–2006. Median urine iodine concentrations (μg/L) <100, 100–199, 200–299, 

and ≥300 represent insufficient, adequate, above requirements, and excessive intake, 

respectively. Error bars represent 95% CI. Sample sizes (n) were as follows: males: 307 [6–

11 y], 693 [12–19 y], 512 [20–39 y], 454 [40–59 y], 511 [≥60 y]; females: 359 [6–11 y], 750 

[12–19 y], 622 [20–39 y], 465 [40–59 y], 502 [≥60 y]. The SI conversion factor (nmol/L) for 

urine iodine is ×7.88.
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Figure 3. 
Time trends of age-adjusted geometric mean concentrations of serum folate (panel A, 

persons ≥4 y) and RBC folate (panel B, persons ≥4 y), serum 25-hydroxyvitamin D (panel 

C, persons ≥12 y), and urine iodine (panel D, persons ≥6 y) by sex and race-ethnicity in the 

US population, NHANES 1988–2006. Error bars represent 95% CI. Within a demographic 

group, bars not sharing a common letter differ (P <0.05). Age adjustment was done using 

direct standardization. Refer to Supplemental Table 3 for sample sizes (n). MA, Mexican 
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American; NHB, non-Hispanic black; NHW, non-Hispanic white. SI conversion factors are 

as follows: folate, ×2.266 (nmol/L); iodine, ×7.88 (nmol/L).
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Figure 4. 
Prevalence estimates for risk of nutrient deficiencies in the US population, NHANES 2003–

2006. Error bars represent 95% CI. Nutritional biomarkers were measured in different age 

(e.g., ≥1 y, ≥6 y) and population groups (e.g., women 12–49 y, children 1–5 y). Cutoff 

values (sample size) used to estimate prevalence are: vitamin B-6 (serum pyridoxal-5′-

phosphate <20 nmol/L, [n = 8311]), iron (serum body iron <0 mg/kg, [n = 1369 children and 

4476 women]), vitamin D (serum 25-hydroxyvitamin D <30 nmol/L, [n = 16604]), vitamin 

C (serum ascorbic acid <11.4 μmol/L, [n = 14579]), vitamin B-12 (serum total cobalamin 

<200 ng/L [148 pmol/L], [n = 16316]), vitamin A (serum retinol <0.70 μmol/L, [n = 7254]), 

vitamin E (serum α-tocopherol <11.6 µmol/L, [n = 7254]), and folate (RBC folate <95 μg/L 

[215 nmol/L], [n = 16670]). Vitamin B-6, A and E data are only available for NHANES 

2005–2006.
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Figure 5. 
Prevalence estimates for risk of nutrient deficiencies by age, sex, and race-ethnicity in the 

US population, NHANES 2003–2006. Panel A: vitamin B-6 deficiency in persons ≥1 y 

(serum pyridoxal-5′-phosphate <20 nmol/L); panel B: vitamin D deficiency in persons ≥1 y 

(serum 25-hydroxyvitamin D <30 nmol/L); panel C: iron deficiency in children 1–5 y 

(serum body iron <0 mg/kg); panel D: iron deficiency in women 12–49 y (serum body iron 

<0 mg/kg). Error bars represent 95% CI. Within a demographic group, bars labeled with an 

asterisk indicate a significant difference (P <0.05) relative to the reference group R. Dotted 
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horizontal lines represent the overall prevalence for the population captured in each panel. 

Vitamin B-6 data are only available for NHANES 2005–2006. Refer to Supplemental Table 

4 for sample sizes (n). MA, Mexican American; NHB, non-Hispanic black; NHW, non-

Hispanic white.
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Table 1

Summary information on biochemical indicators of diet and nutrition assessed in the Second Nutrition 

Report1.

Nutrient or dietary 
bioactive compound

• Indicator(s) 
measured

Why measured?
Health impact

Recommended 
biochemical 
concentrations2 
(reference)

What did we find? NHANES years covered

Folate

• Serum folate

• RBC folate

• Plasma tHcy

Deficiency causes 
macrocytic anemia; low 
folate status increases 
risk of NTD and may 
modulate risk of chronic 
diseases (CVD cancer, 
cognitive function)

Clinical deficiency3:
 Serum folate <2 
μg/L (21)
 RBC folate <95 μg/L 
(21)
Functional deficiency:
  tHcy >13 μmol/L 
(33)

Prevalence of folate 
deficiency was <1% in 
the era of post-
fortification; NHB had 
lowest and NHW had 
highest folate status

1999–2006

Vitamin B-6

• Serum PLP

• Serum 4PA

Deficiency causes 
dermatitis, glossitis, 
confusion, anemia; low 
concentrations may 
modulate risk of chronic 
diseases (CVD, cancer, 
cognitive function)

Deficiency:
  PLP <20 nmol/L 
(14)

Prevalence of vitamin 
B-6 deficiency was 11%, 
but differences noted by 
demographic subgroup; 
differences also found in 
PLP and 4PA 
concentrations by 
demographic subgroup

First-time assessment in 
2005–2006

Vitamin B-12

• Serum B-12

• Plasma MMA

Deficiency causes 
macrocytic anemia and 
may cause neurologic 
abnormalities; low 
concentrations may 
increase risk of NTD and 
may modulate risk of 
chronic diseases (CVD, 
cancer, cognitive 
function)

Deficiency:
 B-12 <200 ng/L (18)
;Functional deficiency:
 MMA >271 nmol/L 
(34)

Prevalence of vitamin 
B-12 deficiency was 
higher in older persons 
(4%) than in the general 
population (2%); NHW 
had lowest vitamin B-12 
status

1999–2006

Vitamin C

• Serum ascorbic 
acid

Deficiency causes scurvy; 
has potential (in 
combination with vitamin 
E, zinc, β-carotene 
supplements) to slow 
progression of age-
related macular 
degeneration

Clinical deficiency:
 Vitamin C <11.4 
μmol/L (17)
Low vitamin C 
concentrations:
 11.4–23 μmol/L (17)

Prevalence of vitamin C 
deficiency was 6%, but 
it varied by demographic 
subgroup

2003–2006

Vitamin A

• Serum retinol

• Serum retinyl 
esters (palmitate 
and stearate)

Deficiency may cause 
childhood blindness, 
night blindness, corneal 
thinning, and conjunctival 
metaplasia; low 
concentrations may 
impair immune function, 
growth and development

Severe deficiency:
 Vitamin A <0.35 
μmol/L (19)
Deficiency:
Vitamin A <0.70 
μmol/L (19)

Prevalence of vitamin A 
deficiency was <1%; 
highest concentrations 
found in older persons

1999–2002; 2005–2006

Vitamin E

• Serum α-
tocopherol

• Serum γ-
tocopherol

Deficiency causes 
peripheral neuropathy

Deficiency:
 α-Tocopherol <11.6 
µmol/L (20)

Prevalence of vitamin E 
deficiency was <1%

1999–2002; 2005–2006

Carotenoids

• Serum carotenes 
& xanthophylls

Good biological 
indicators of fruit and 
vegetable intake

No defined serum 
concentrations

Generally, highest 
concentrations in older 
persons

2001–2002; 2005–2006
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Nutrient or dietary 
bioactive compound

• Indicator(s) 
measured

Why measured?
Health impact

Recommended 
biochemical 
concentrations2 
(reference)

What did we find? NHANES years covered

Vitamin D

• Serum 25OHD

Deficiency causes 
inadequate mineralization 
or demineralization of 
skeleton (rickets in 
children; osteomalacia in 
adults); low 
concentrations may affect 
muscle strength, risk for 
cancer or type 2 diabetes

At risk for deficiency:
 25OHD <30 nmol/L 
(16)
At risk for inadequacy:
 25OHD 30–<50 
nmol/L (16)
Sufficient:
  25OHD 50–75 
nmol/L (16)
Reason for concern:
  25OHD >125 
nmol/L (16)

NHB had the lowest and 
NHW had the highest 
concentrations; 
likelihood of being 
vitamin D deficient was 
significantly influenced 
by race-ethnicity

2001–2006

Fatty acids

• Plasma SFA

• Plasma MUFA

• Plasma PUFA

Association between SFA 
and increased CVD risk; 
association between long-
chain n3 PUFA and 
decreased CVD risk; 
potential association 
between long-chain n3 
PUFA and improved 
visual and cognitive 
development in infant

No defined plasma 
concentrations

Race-ethnic differences 
found in concentrations 
of heart-healthy n3 
PUFA EPA and DHA;
;no consistent race-
ethnic patterns found 
within fatty acid groups;
generally similar 
concentrations in men 
and women;
generally lower 
concentrations in 
younger adults

First-time assessment in 
2003–2004 (fasted adults 
only)

Iron

• Serum ferritin

• Serum soluble 
transferrin 
receptor

• Serum body iron

Deficiency has negative 
effects on cognitive 
development among 
infants and adolescents 
and eventually causes 
anemia

Depleted iron stores:
  Ferritin <15 μg/L 
(≥5 y) and <12 μg/L 
(<5 y) (22)
Functional iron 
deficiency:
  Body iron <0 mg/kg 
(15)

Prevalence of iron 
deficiency based on 
body iron was 10% for 
women of childbearing 
age and 7% for children, 
but it varied by race-
ethnic group

2003–2006 (children and 
women of childbearing 
age only)

Iodine

• Urine iodine

Deficiency causes 
hypothyroidism, goiter, 
cretinism, growth and 
developmental 
abnormalities, and mental 
retardation

Population median 
urine iodine (μg/L) 
(13):
  Insufficient intake: 
<100
  Adequate intake:
100–199
  Above 
requirements: 200–299
  Excessive intake: 
≥300

Iodine intake of US 
population was 
adequate; young women 
had lowest iodine intake, 
slightly above 
insufficient 
concentrations; urine 
iodine concentrations 
relatively stable over 
two decades (1988–
2006)

2001–2006

Phytoestrogens (isoflavones 
& lignans)

• Urine 
isoflavones & 
lignans

Association with reduced 
risk of hormone-
dependent cancers, 
reduced severity of 
menopause-related 
symptoms, CVD, 
modulation of 
osteoporosis

No defined urine 
concentrations

No consistent patterns 
with regard to age, sex, 
or race-ethnicity; 
relatively similar 
concentrations from 
1999–2006

1999–2006

Acrylamide

• Acrylamide and 
glycidamide 
hemoglobin 
adducts

Neurotoxic and suspected 
human carcinogen; one 
exposure route is through 
food (starchy foods that 
are cooked at high-
temperature and low-
moisture conditions)

No defined hemoglobin 
adduct concentrations

No consistent patterns 
with regard to age, sex, 
or race-ethnicity for 
blood adduct 
concentrations; 
interesting patterns 
emerged for 
glycidamide-to-
acrylamide adduct ratio 
(higher concentrations in 
children compared to 

First-time assessment in 
2003–2004
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Nutrient or dietary 
bioactive compound

• Indicator(s) 
measured

Why measured?
Health impact

Recommended 
biochemical 
concentrations2 
(reference)

What did we find? NHANES years covered

other age groups; lower 
concentrations in NHB 
compared to other race-
ethnic groups)

1
25OHD, 25-hydroxyvitamin D; 4PA, 4-pyridoxic acid; B-12, total cobalamin; CVD, cardiovascular disease; DHA, docosahexaenoic acid; EPA, 

eicosapentaenoic acid; PLP (nmol/L), pyridoxal-5′-phosphate; tHcy, total homocysteine; MMA, methylmalonic acid; NHB, non-Hispanic black; 
NHW, non-Hispanic white; NTD, neural tube defect.

2
SI conversion factors are as follows: folate, ×2.266 (nmol/L); vitamin B-12, ×0.738 (pmol/L); ferritin, ×2.247 (pmol/L); iodine, ×7.88 (nmol/L).

3
Cutoff values used for serum (2 μg/L) and RBC folate (95 μg/L) are lower than the traditional microbiologic assay derived values (3 and 140 μg/L) 

to account for assay differences between the BioRad assay used in NHANES 2003–2006 and the microbiologic assay (21).
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Table 2

Percentage of the US population ≥6 y and of women of childbearing age at risk for nutritional deficiencies, 

NHANES 2005–2006.

Unweighted sample size Weighted percentage1 Estimated total number of persons2

Population ≥6 y, 7 nutrients considered3

 0 deficiency 5188 78.0 (74.7, 81.0) 208 500 000

 1 deficiency 1404 16.3 (14.3, 18.6) 43 600 000

 ≥2 deficiencies 449 5.7 (4.4, 7.3) 15 200 000

Women 12–49 y, iron considered4

 0 deficiency 2344 89.6 (88.4, 90.7) 71 000000

Women 12–49 y, 7 nutrients considered3

 0 deficiency 1506 73.6 (69.1, 77.6) 58 300 000

 1 deficiency 574 20.1 (17.7, 22.7) 15 900 000

 ≥2 deficiencies 167 6.4 (4.3, 9.4) 5 100 000

Women 12–49 y, 8 nutrients considered5

 0 deficiency 1358 67.5 (63.5, 71.3) 53 500 000

 1 deficiency 621 23.3 (20.9, 25.9) 18 500 000

 ≥2 deficiencies 266 9.2 (6.7, 12.5) 7 300 000

1
Estimates provided are percent (%) with 95% CI in parenthesis

2
Current Population Survey 2005–2006 available at (7).

3
Biochemical indicators and cutoffs used for deficiency definition: folate (RBC folate <95 μg/L [215 nmol/L]); vitamin B-6 (serum pyridoxal-5′-

phosphate <20 nmol/L); vitamin B-12 (serum total cobalamin <200 ng/L [148 pmol/L]); vitamin C (serum ascorbic acid <11.4 μmol/L); vitamin A 
(serum retinol <0.70 μmol/L); vitamin E (serum alpha-tocopherol <11.6 μmol/L); and vitamin D (serum 25-hydroxyvitamin D <30 nmol/L)

4
Iron deficiency (body iron <0 mg/kg)

5
Biochemical indicators and cutoffs used for deficiency definition: same 7 vitamin deficiency indicators and cutoffs as listed above plus 1 indicator 

for iron deficiency (body iron <0 mg/kg)
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